Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 44(12): 1613-1625, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28770421

RESUMO

Adaptive laboratory evolution (ALE) was employed to isolate arsenate and copper cross-resistant strains, from the copper-resistant M. sedula CuR1. The evolved strains, M. sedula ARS50-1 and M. sedula ARS50-2, contained 12 and 13 additional mutations, respectively, relative to M. sedula CuR1. Bioleaching capacity of a defined consortium (consisting of a naturally occurring strain and a genetically engineered copper sensitive strain) was increased by introduction of M. sedula ARS50-2, with 5.31 and 26.29% more copper recovered from enargite at a pulp density (PD) of 1 and 3% (w/v), respectively. M. sedula ARS50-2 arose as the predominant species and modulated the proportions of the other two strains after it had been introduced. Collectively, the higher Cu2+ resistance trait of M. sedula ARS50-2 resulted in a modulated microbial community structure, and consolidating enargite bioleaching especially at elevated PD.


Assuntos
Arseniatos/farmacologia , Cobre/farmacologia , Resistência Microbiana a Medicamentos , Minerais/metabolismo , Sulfolobaceae/efeitos dos fármacos , Sulfolobaceae/metabolismo , Cobre/química , Cobre/isolamento & purificação , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Genes Arqueais/genética , Minerais/química , Mutação , Sulfolobaceae/classificação , Sulfolobaceae/genética
2.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27940539

RESUMO

Thermotoga maritima ferments a broad range of sugars to form acetate, carbon dioxide, traces of lactate, and near theoretic yields of molecular hydrogen (H2). In this organism, the catabolism of pentose sugars such as arabinose depends on the interaction of the pentose phosphate pathway with the Embden-Myerhoff and Entner-Doudoroff pathways. Although the values for H2 yield have been determined using pentose-supplemented complex medium and predicted by metabolic pathway reconstruction, the actual effect of pathway elimination on hydrogen production has not been reported due to the lack of a genetic method for the creation of targeted mutations. Here, a spontaneous and genetically stable pyrE deletion mutant was isolated and used as a recipient to refine transformation methods for its repair by homologous recombination. To verify the occurrence of recombination and to assess the frequency of crossover events flanking the deleted region, a synthetic pyrE allele, encoding synonymous nucleotide substitutions, was used. Targeted inactivation of araA (encoding arabinose isomerase) in the pyrE mutant was accomplished using a divergent, codon-optimized Thermosipho africanus pyrE allele fused to the T. maritima groES promoter as a genetic marker. Mutants lacking araA were unable to catabolize arabinose in a defined medium. The araA mutation was then repaired using targeted recombination. Levels of synthesis of H2 using arabinose-supplemented complex medium by wild-type and araA mutant cell lines were compared. The difference between strains provided a direct measurement of H2 production that was dependent on arabinose consumption. Development of a targeted recombination system for genetic manipulation of T. maritima provides a new strategy to explore H2 formation and life at an extremely high temperature in the bacterial domain. IMPORTANCE: We describe here the development of a genetic system for manipulation of Thermotoga maritima T. maritima is a hyperthermophilic anaerobic bacterium that is well known for its efficient synthesis of molecular hydrogen (H2) from the fermentation of sugars. Despite considerable efforts to advance compatible genetic methods, chromosome manipulation has remained elusive and hindered use of T. maritima or its close relatives as model hyperthermophiles. Lack of a genetic method also prevented efforts to manipulate specific metabolic pathways to measure their contributions to H2 yield. To overcome this barrier, a homologous chromosomal recombination method was developed and used to characterize the contribution of arabinose catabolism to H2 formation. We report here a stable genetic method for a hyperthermophilic bacterium that will advance studies on the basic and synthetic biology of Thermotogales.


Assuntos
Aldose-Cetose Isomerases/genética , Arabinose/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo , Fermentação/genética , Deleção de Genes , Hidrogênio/metabolismo , Thermotoga maritima/isolamento & purificação
3.
J Ind Microbiol Biotechnol ; 43(10): 1455-65, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27520549

RESUMO

Extremely thermoacidophilic members of the Archaea such as the lithoautotroph, Metallosphaera sedula, are among the most acid resistant forms of life and are of great relevance in bioleaching. Here, adaptive laboratory evolution was used to enhance the acid resistance of this organism while genomics and transcriptomics were used in an effort to understand the molecular basis for this trait. Unlike the parental strain, the evolved derivative, M. sedula SARC-M1, grew well at pH of 0.90. Enargite (Cu3AsS4) bioleaching conducted at pH 1.20 demonstrated SARC-M1 leached 23.78 % more copper relative to the parental strain. Genome re-sequencing identified two mutations in SARC-M1 including a nonsynonymous mutation in Msed_0408 (an amino acid permease) and a deletion in pseudogene Msed_1517. Transcriptomic studies by RNA-seq of wild type and evolved strains at various low pH values demonstrated there was enhanced expression of genes in M. sedula SARC-M1 encoding membrane complexes and enzymes that extrude protons or that catalyze proton-consuming reactions. In addition, M. sedula SARC-M1 exhibited reduced expression of genes encoding enzymes that catalyze proton-generating reactions. These unique genomic and transcriptomic features support a model for increased acid resistance arising from enhanced control over cytoplasmic pH.


Assuntos
Sulfolobaceae/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cobre/metabolismo , Evolução Molecular Direcionada , Perfilação da Expressão Gênica , Genômica , Processos Heterotróficos , Concentração de Íons de Hidrogênio , Mutação , Sulfolobaceae/crescimento & desenvolvimento , Sulfolobaceae/metabolismo
4.
Microbiology (Reading) ; 161(12): 2423-33, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26408318

RESUMO

Mercury is a heavy metal and toxic to all forms of life. Metal exposure can invoke a response to improve survival. In archaea, several components of a mercury response system have been identified, but it is not known whether metal transport is a member of this system. To identify such missing components, a peptide-tagged MerR transcription factor was used to localize enriched chromosome regions by chromosome immunoprecipitation combined with DNA sequence analysis. Such regions could serve as secondary regulatory binding sites to control the expression of additional genes associated with mercury detoxification. Among the 31 highly enriched loci, a subset of five was pursued as potential candidates based on their current annotations. Quantitative reverse transcription-PCR analysis of these regions with and without mercury treatment in WT and mutant strains lacking merR indicated significant regulatory responses under these conditions. Of these, a Family 5 extracellular solute-binding protein and the MarR transcription factor shown previously to control responses to oxidation were most strongly affected. Inactivation of the solute-binding protein by gene disruption increased the resistance of mutant cells to mercury challenge. Inductively coupled plasma-MS analysis of the mutant cell line following metal challenge indicated there was less intracellular mercury compared with the isogenic WT strain. Together, these regulated genes comprise new members of the archaeal MerR regulon and reveal a cascade of transcriptional control not previously demonstrated in this model organism.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/genética , Regulação Bacteriana da Expressão Gênica , Mercúrio/metabolismo , Regulon , Archaea/química , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Sequência de Bases , Sítios de Ligação , Imunoprecipitação da Cromatina , Dados de Sequência Molecular , Regiões Promotoras Genéticas
5.
Microorganisms ; 3(3): 567-87, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-27682106

RESUMO

Sulfolobus solfataricus is a thermoacidophilic member of the archaea whose envelope consists of an ether-linked lipid monolayer surrounded by a protein S-layer. Protein translocation across this envelope must accommodate a steep proton gradient that is subject to temperature extremes. To better understand this process in vivo, studies were conducted on the S. solfataricus glycosyl hydrolyase family 57 α-Amylase (AmyA). Cell lines harboring site specific modifications of the amyA promoter and AmyA structural domains were created by gene replacement using markerless exchange and characterized by Western blot, enzyme assay and culture-based analysis. Fusion of amyA to the malAp promoter overcame amyAp-mediated regulatory responses to media composition including glucose and amino acid repression implicating action act at the level of transcription. Deletion of the AmyA Class II N-terminal signal peptide blocked protein secretion and intracellular protein accumulation. Deletion analysis of a conserved bipartite C-terminal motif consisting of a hydrophobic region followed by several charged residues indicated the charged residues played an essential role in membrane-association but not protein secretion. Mutants lacking the C-terminal bipartite motif exhibited reduced growth rates on starch as the sole carbon and energy source; therefore, association of AmyA with the membrane improves carbohydrate utilization. Widespread occurrence of this motif in other secreted proteins of S. solfataricus and of related Crenarchaeota suggests protein association with membranes is a general trait used by these organisms to influence external processes.

6.
Microbiology (Reading) ; 159(Pt 6): 1198-1208, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23619003

RESUMO

Crenarchaeota include extremely thermoacidophilic organisms that thrive in geothermal environments dominated by sulfidic ores and heavy metals such as mercury. Mercuric ion, Hg(II), inactivates transcription in the crenarchaeote Sulfolobus solfataricus and simultaneously derepresses transcription of a resistance operon, merHAI, through interaction with the MerR transcription factor. While mercuric reductase (MerA) is required for metal resistance, the role of MerH, an adjacent small and predicted product of an ORF, has not been explored. Inactivation of MerH either by nonsense mutation or by in-frame deletion diminished Hg(II) resistance of mutant cells. Promoter mapping studies indicated that Hg(II) sensitivity of the merH nonsense mutant arose through transcriptional polarity, and its metal resistance was restored partially by single copy merH complementation. Since MerH was not required in vitro for MerA-catalysed Hg(II) reduction, MerH may play an alternative role in metal resistance. Inductively coupled plasma-mass spectrometry analysis of the MerH deletion strain following metal challenge indicated that there was prolonged retention of intracellular Hg(II). Finally, a reduced rate of mer operon induction in the merH deletion mutant suggested that the requirement for MerH could result from metal trafficking to the MerR transcription factor.


Assuntos
Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea , Mercúrio/toxicidade , Sulfolobus solfataricus/efeitos dos fármacos , Sulfolobus solfataricus/metabolismo , Proteínas Arqueais/genética , Citoplasma/química , Técnicas de Inativação de Genes , Teste de Complementação Genética , Espectrometria de Massas , Sulfolobus solfataricus/química , Sulfolobus solfataricus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...